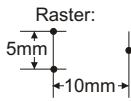


C-9448


Pt10v Adjustment Potentiometer

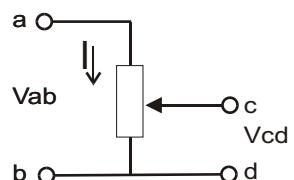
Box composed by:

1k , 4k7 , 10k , 47k
100k , 470k
1M ,

Technical information
included
inside

Adjustment potentiometers for printed circuit board. Vertical Adjustment

Closed casing = Protected against dust


Power = 0,15 W at 40°C

Temperature Coef. = $\pm 300 \text{ ppm}/^\circ\text{C}$ ($R < 100 \text{ k}\Omega$)

Tolerance = $\pm 20\%$ ($< 1 \text{ M}\Omega$)

Operating Temperature = From -25 to 70°C

Voltage Divider

$$V_{ab} = I \cdot R$$

$$V_{cd} = I \cdot r$$

$$\frac{V_{ab}}{V_{cd}} = \frac{R}{r}$$

$$V_{cd} = V_{ab} \cdot \frac{r}{R}$$

R: Input resistance = total resistance = R_{ab}
r: output resistance = r_{cd}

Components place inside the box:

4k7	10k	100k	1M	1k
47k				470k

$$E = I \cdot R$$

E in Volt
I in Amper
R in Ohm

Law of Ohm:

Formula in relation:

$$R = \frac{E}{I} \quad I = \frac{E}{R}$$

$$P = E \cdot I$$

P in Watt
E in Volt
I in Amper

Potencias en C.Contínua

Formula in relation:

$$I = \frac{P}{E} \quad E = \frac{P}{I}$$

Resistors

Capacitors

Inductances

Connection in Series:		Connection in parallel:	
$R_T = R_1 + R_2 + R_3$	$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$		
$\frac{1}{C_T} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3}$	$C_T = C_1 + C_2 + C_3$		
$L_T = L_1 + L_2 + L_3$	$\frac{1}{L_T} = \frac{1}{L_1} + \frac{1}{L_2} + \frac{1}{L_3}$		